Search This Blog

Wednesday, 22 April 2020

Questions for practice: Bode plot, Nyquist plot, Root Locus and M and N circles


Q1.  Sketch the bode plot and find the stability of the system for the following functions

  1. G(s) = 50/(s+1)(s+2)
  2. G(s) = 50/[s^2(s+1)(s+2)]
Q2. Define the following terms :  (i)  Bode Plot,  (ii) Gain Marging ,(iii) Phase margin
,       (iv) Gain cross over frequency and (v) Phase cross over frequency
Q 3. What is the requirement of gain margin and phase margin for a system to be          
          stable/unstable /    marginally stable?
Q4.  What information you get from Bode's plot.
Q5.  State advantages of Bode Plot
Q6 . Determine the angle and magnitude  of  G(s)H(s) = s(s+1)/[(s+1)(s+2)  at s =j5.
Q7. Determine the open loop transfer function from the bode plot shown below
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhSGgl9XthpG_TMlYuZhRtE9NK2bpjmWX-Iav2lfPESe6xx8oahrCBPtFWybTUfzRwJCcgxDdJg_fkrrQR8-iDnQI8rQgGyod3wbPaQC-jvlCDMPJZo7dJsmRq9dGuncYhhyphenhyphenoPw53lM0Uk/s320/uploaded.jpg


Q8:  Determine the value of K for the open loop transfer function  G(s)H(s)=   K/[s(1+0.1s)(1+s)]          
        so that (a) the gain margin is 15 db and (b) phase margin is 60 degree.
Q9. Draw the Bode plot  for the transfer function  G(s)H(s) = 48(s+10)/[s(s+20)(s^2+2.4s+16)
Q10   Sketch the Bode plot for the transfer function  G(s)H(s)= 1000/[s(1+0.1s)(1+0.001s)] and
        determine (a) Gain cross over frequency
                         (b)   Phase Cross over frequency
                          (c)   G.M and P.M.
                         (d)  stability of the given system









Root Locus:

1.
Explain the term centroid and  asymptotes?
2.
What is break away point?
3.
Calculate the angle of asymptotes  and centroid for the system   having                                 G(s)= K(s+2)/[s(s+1)(s+4)
4.
Find the  centroid and breakaway point for the system having   G(s) = K/[s(s+2)(s^2+6s+25)]
5.
 For G(s)H(s) = K/[s(s+1)(s+3)], determine the coordinates of valid break-away/break in points(s)
6.
Sketch the root locus for  (i) G(s)H(s)= K/s(s+3)(s+5) and (ii) G(s)H(s) = K/[s(s+6)(s^2+4s+13)]  (Manke)
7.
 Explain the effect of addition of poles and zeros to a  second order control system. (root Locus)
8.
For G(s) H(s)= K/s(s+4) Draw loot locus and determine the  value of K if the damping ratio is 0.707 . (Manke)
9.
How will you obtain the angle of departure and angle of arrival of root locii?
10.
State the rule for obtaining the breakaway point  in the root locii.
Nyquist Plot
1.       
What do you mean by Nyquist Criterion?
2.       
For G(s)H(s)= K/[s(s+1)(s+2)], draw the nyquist plot and hence calculate the range of values of K for stability.
3.       
Using Nyquist criterion  investigate the stability  of a unity feedback control system for G(sH(s) = 20/[s(s+2)(s+3)]
4.       
Draw the Nyquist plot for the system G(s)H(s)=1/[s(s-2)] and  investigate the stability
5.       
Using Nyquist criterion investigate the stability of a closed loop control
system whose open loop transfer function is    K/[s^3(ST+1)]
M and N Circles
1.
What are M and N circles?
2.
Write short notes on M and N circles.




Note: Students  can download their study materials from the blog:     
             bhaskaracharyablogspot.com. Three   links are given to you. You can download theses reference books online also. 
If any doubt regarding these practice questions   you can contact me any time.
Stay home  stay safe     and Take care to  you and your family

No comments:

Post a Comment